On High-Dimensional Ramsey Number

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on the Ramsey number and the planar Ramsey number for C4 and complete graphs

We give a lower bound for the Ramsey number and the planar Ramsey number for C4 and complete graphs. We prove that the Ramsey number for C4 and K7 is 21 or 22. Moreover we prove that the planar Ramsey number for C4 and K6 is equal to 17.

متن کامل

On the Ramsey number R(3, 6)

The lower bound for the classical Ramsey number R(4, 6) is improved from 35 to 36. The author has found 37 new edge colorings of K35 that have no complete graphs of order 4 in the first color, and no complete graphs of order 6 in the second color. The most symmetric of the colorings has an automorphism group of order 4, with one fixed point, and is presented in detail. The colorings were found ...

متن کامل

On a Variation of the Ramsey Number

Let c(m, zi) be the least integer p such that, for any graph G of order p, either G has an zzi-cycle or its complement G has an zz-cycle. Values of c(m, n) are established for zzz, zi < 6 and general formulas are proved for c(3, zi), c(4, n), and c(5, zz). Introduction. It is a well-known fact that in any gathering of six people, there are three people who are mutual acquaintances or three peop...

متن کامل

On the Size-Ramsey Number of Hypergraphs

The size-Ramsey number of a graph G is the minimum number of edges in a graph H such that every 2-edge-coloring of H yields a monochromatic copy of G. Size-Ramsey numbers of graphs have been studied for almost 40 years with particular focus on the case of trees and bounded degree graphs. We initiate the study of size-Ramsey numbers for k-uniform hypergraphs. Analogous to the graph case, we cons...

متن کامل

The Size-ramsey Number

The size-Ramsey number of a graph G is the smallest number of edges in a graph Γ with the Ramsey property for G, that is, with the property that any colouring of the edges of Γ with two colours (say) contains a monochromatic copy of G. The study of size-Ramsey numbers was proposed by Erdős, Faudree, Rousseau, and Schelp in 1978, when they investigated the size-Ramsey number of certain classes o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pure Mathematics

سال: 2015

ISSN: 2160-7583,2160-7605

DOI: 10.12677/pm.2015.55028